Phase-change behavior of RuSbTe thin film for photonic applications with amplitude-only modulation

Author:

Hatayama ShogoORCID,Makino KotaroORCID,Saito YutaORCID

Abstract

AbstractGe2Sb2Te5 (GST), the most mature phase-change materials (PCM), functions as a recoding layer in nonvolatile memory and optical discs by contrasting the physical properties upon phase transition between amorphous and crystalline phases. However, GST faces challenges such as a large extinction coefficient (k) and low thermal stability of the amorphous phase. In this study, we introduce RuSbTe as a new PCM to address the GST concerns. Notably, the crystallization temperature of the amorphous RuSbTe is approximately 350 °C, significantly higher than GST. A one-order-of-magnitude increase in the resistivity contrast was observed upon phase transition. The crystalline (0.35–0.50 eV) and amorphous (0.26–0.37 eV) phases exhibit relatively small band gap values, resulting in substantial k. Although RuSbTe demonstrates a k difference of approximately 1 upon crystallization at the telecommunications C-band, the refractive index (n) difference is negligible. Unlike GST, which induces both phase retardation and amplitude modulation in its optical switch device, RuSbTe exhibits amplitude-only modulation. This study suggests that RuSbTe has the potential to enable new photonic computing devices that can independently control the phase and amplitude. Combining RuSbTe with phase-only modulators could open avenues for advanced applications.

Funder

National Institute of Information and Communications Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3