Predicting wildfire ignition induced by dynamic conductor swaying under strong winds

Author:

Wang Xinyue,Bocchini PaoloORCID

Abstract

AbstractDuring high wind events with dry weather conditions, electric power systems can be the cause of catastrophic wildfires. In particular, conductor-vegetation contact has been recognized as the major ignition cause of utility-related wildfires. There is a urgent need for accurate wildfire risk analysis in support of operational decision making, such as vegetation management or preventive power shutoffs. This work studies the ignition mechanism caused by transmission conductor swaying out to nearby vegetation and resulting in flashover. Specifically, the studied limit state is defined as the conductor encroaching into prescribed minimum vegetation clearance. The stochastic characteristics of the dynamic displacement response of a multi-span transmission line are derived through efficient spectral analysis in the frequency domain. The encroachment probability at a specified location is estimated by solving a classical first-excursion problem. These problems are often addressed using static-equivalent models. However, the results show that the contribution of random wind buffeting to the conductor dynamic displacement is appreciable under turbulent strong winds. Neglecting this random and dynamic component can lead to an erroneous estimation of the risk of ignition. The forecast duration of the strong wind event is an important parameter to determine the risk of ignition. In addition, the encroachment probability is found highly sensitive to vegetation clearance and wind intensity, which highlights the need of high resolution data for these quantities. The proposed methodology offers a potential avenue for accurate and efficient ignition probability prediction, which is an important step in wildfire risk analysis.

Funder

Pennsylvania Department of Community and Economic Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Alcasena, F. J., Ager, A. A., Bailey, J. D., Pineda, N. & Vega-García, C. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia. Spain. J. Environ. Manage. 231, 303–320 (2019).

2. Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 1–15 (2019).

3. Sharples, J. J. et al. Natural hazards in Australia: Extreme bushfire. Clim. Change 139, 85–99 (2016).

4. Porter, T. W., Crowfoot, W. & Newsom, G. wildfire activity statistics. Accessed January 07, 2023. (2020) https://www.fire.ca.gov/media/0fdfj2h1/2020_redbook_final.pdf.

5. Keeley, J. E. & Syphard, A. D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildland Fire 27, 781–799 (2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3