Transfer learning strategies for solar power forecasting under data scarcity

Author:

Sarmas ElissaiosORCID,Dimitropoulos Nikos,Marinakis Vangelis,Mylona Zoi,Doukas Haris

Abstract

AbstractAccurately forecasting solar plants production is critical for balancing supply and demand and for scheduling distribution networks operation in the context of inclusive smart cities and energy communities. However, the problem becomes more demanding, when there is insufficient amount of data to adequately train forecasting models, due to plants being recently installed or because of lack of smart-meters. Transfer learning (TL) offers the capability of transferring knowledge from the source domain to different target domains to resolve related problems. This study uses the stacked Long Short-Term Memory (LSTM) model with three TL strategies to provide accurate solar plant production forecasts. TL is exploited both for weight initialization of the LSTM model and for feature extraction, using different freezing approaches. The presented TL strategies are compared to the conventional non-TL model, as well as to the smart persistence model, at forecasting the hourly production of 6 solar plants. Results indicate that TL models significantly outperform the conventional one, achieving 12.6% accuracy improvement in terms of RMSE and 16.3% in terms of forecast skill index with 1 year of training data. The gap between the two approaches becomes even bigger when fewer training data are available (especially in the case of a 3-month training set), breaking new ground in power production forecasting of newly installed solar plants and rendering TL a reliable tool in the hands of self-producers towards the ultimate goal of energy balancing and demand response management from an early stage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3