Diagnostic performance of convolutional neural networks for dental sexual dimorphism

Author:

Franco Ademir,Porto Lucas,Heng Dennis,Murray Jared,Lygate Anna,Franco Raquel,Bueno Juliano,Sobania Marilia,Costa Márcio M.,Paranhos Luiz R.,Manica Scheila,Abade André

Abstract

AbstractConvolutional neural networks (CNN) led to important solutions in the field of Computer Vision. More recently, forensic sciences benefited from the resources of artificial intelligence, especially in procedures that normally require operator-dependent steps. Forensic tools for sexual dimorphism based on morphological dental traits are available but have limited performance. This study aimed to test the application of a machine learning setup to distinguish females and males using dentomaxillofacial features from a radiographic dataset. The sample consisted of panoramic radiographs (n = 4003) of individuals in the age interval of 6 and 22.9 years. Image annotation was performed with V7 software (V7labs, London, UK). From Scratch (FS) and Transfer Learning (TL) CNN architectures were compared, and diagnostic accuracy tests were used. TL (82%) performed better than FS (71%). The correct classifications of females and males aged ≥ 15 years were 87% and 84%, respectively. For females and males < 15 years, the correct classifications were 80% and 83%, respectively. The Area Under the Curve (AUC) from Receiver-operating Characteristic (ROC) curves showed high classification accuracy between 0.87 and 0.91. The radio-diagnostic use of CNN for sexual dimorphism showed positive outcomes and promising forensic applications to the field of dental human identification.

Funder

American Society of Forensic Odontology

Forensic Odontology Scholarship, Health Sciences Authority of Singapore

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3