Solar power generation intermittency and aggregation

Author:

Wu Cong,Zhang Xiao-Ping,Sterling Michael

Abstract

AbstractThe inherent intermittency of solar power due to diurnal and seasonal cycles has usually resulted in the need for alternative generation sources thereby increasing system operation costs. However, when solar power is spread over a large geographical area with significant time differences, the intermittency can be significantly reduced and also the electricity market balancing cost. The aim of this article is to address the fundamental scientific question on how the intermittency of solar power generation is affected by aggregation, which is of great interest in the wider power and energy community and would have profound impacts on the solar energy integration into the energy supply and Net-Zero Implementation. This article goes beyond the typical regional analysis by investigating solar power intermittency at 5 aggregation levels from a global perspective based on global 7 year hourly meteorological re-analysis data with a fine spatial resolution of $${0.25}^{\circ }\times {0.25}^{\circ } (\sim 28 \; \mathrm{km} \times 28 \; \mathrm{km})$$ 0.25 × 0.25 ( 28 km × 28 km ) . In the proposed assessment framework, a coefficient of variation (CV) is used to quantify solar power intermittency and hence characterize the potential benefits of wide area solar power aggregation. A duration curve is used to characterize the intermittency in terms of power availability and a probability density function is further employed to investigate the dispersion and scaling behavior of CV at different aggregation levels. The findings indicate that the CV of solar power generation of ‘Inner Mongolia’ in China drops from 129.65 to 105.65% in the level of ‘Asia’ (by 24% decrease), to 56.11% in ‘Asia-North_America’ (by 73.54% decrease) and to the smallest 43.50% in ‘Global’ (by 86.15% decrease), nearly 3.5 times of that in ‘Asia’; (b) the availability of solar power generation increases from 52.17% in Germany, to 73.30% in ‘Europe_EU_plus’, to 77.82% in ‘Europe’, to 98.59% in ‘Europe-North_America’ (80.60% in ‘Europe-Africa’, 96.90% in ‘Europe-Asia’), to 100% in ‘Global’. Finally, conclusions and recommendations are provided to support a Net-Zero strategy.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3