Composition and decomposition of rhizoma peanut (Arachis glabrata Benth.) belowground biomass

Author:

S. Santos Erick R.,B. Dubeux José C.,Sollenberger Lynn E.,B. Siqueira Michelle C.,O. S. van Cleef Flávia,M. Jaramillo David,Q. S. D. Zagato Luana,D. Queiroz Luana M.,Garcia Liza,V. Garcia Carlos C.,Ruiz-Moreno Martin

Abstract

AbstractRoots and rhizomes can play an important role in nutrient cycling, however, few studies have investigated how their decomposition pattern is affected by defoliation and time of the year. This 2-year study evaluated root-rhizome composition and decomposition of a warm-season rhizomatous perennial legume [rhizoma peanut (RP; Arachis glabrata Benth.)] under continuous stocking or when defoliated by clipping every 56 days. A 168-days incubation trial was performed to determine disappearance of biomass and N and changes in acid detergent fiber (ADF), acid detergent insoluble N (ADIN), and C:N ratio. Additionally, three 56-days incubations were performed each year to evaluate the disappearance coefficient (B0) and relative decay rate (k). There were no treatment differences in any response for the 168-days incubation. After 168 days, 21 and 60% of initial biomass and initial N remained, respectively. Relative decay rate for OM and N were 0.0088 and 0.0035 g g−1 day−1, respectively. Carbon-to-N ratio decreased from 29 at day 0 to 17 at day 168. Concentration of ADIN increased from 6.9 to 19.3 g kg−1, plateauing at day 79. The B0 and k for remaining OM and N were greater in late than early season and could be explained by greater N concentration and lesser C:N ratio. Rapid decomposition, difference in C:N ratio from day 0 to 168, and the increase in ADIN concentration during incubation indicate large amounts of root-rhizome-soluble C at initiation of incubation. These data indicate that RP root-rhizome turnover is more responsive to season than defoliation frequency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3