The development of a prediction model based on deep learning for prognosis prediction of gastrointestinal stromal tumor: a SEER-based study

Author:

Zeng Junjie,Li Kai,Cao Fengyu,Zheng Yongbin

Abstract

AbstractAccurately predicting the prognosis of Gastrointestinal stromal tumor (GIST) patients is an important task. The goal of this study was to create and assess models for GIST patients' survival patients using the Surveillance, Epidemiology, and End Results Program (SEER) database based on the three different deep learning models. Four thousand five hundred thirty-eight patients were enrolled in this study and divided into training and test cohorts with a 7:3 ratio; the training cohort was used to develop three different models, including Cox regression, RSF, and DeepSurv model. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The net benefits at risk score stratification of GIST patients based on the optimal model was compared with the traditional AJCC staging system using decision curve analysis (DCA). The clinical usefulness of risk score stratification compared to AJCC tumor staging was further assessed using the Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI). The DeepSurv model predicted cancer-specific survival (CSS) in GIST patients showed a higher c-index (0.825), lower Brier scores (0.142), and greater AUC of receiver operating characteristic (ROC) analysis (1-year ROC:0.898; 3-year:0.853, and 5-year ROC: 0.856). The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values ( training cohort: 0.425 for 1-year, 0.329 for 3-year and 0.264 for 5-year CSS prediction; test cohort:0.552 for 1-year,0.309 for 3-year and 0.255 for 5-year CSS prediction) and IDI (training cohort: 0.130 for 1-year,0.141 for 5-year and 0.155 for 10-year CSS prediction; test cohort: 0.154 for 1-year,0.159 for 3-year and 0.159 for 5-year CSS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.001). DCA demonstrated the risk score stratification as more clinically beneficial and discriminatory than AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of GIST patients. This study established a high-performance prediction model for projecting GIST patients based on deep learning, which has advantages in predicting each person's prognosis and risk stratification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3