Analysis of prognostic model based on immunotherapy related genes in lung adenocarcinoma

Author:

Zhang Peng,Wang Wenmiao,Liu Lei,Li HouQiang,Sha XinYu,Wang Silin,Huang Zhanghao,Zhou Youlang,Shi Jiahai

Abstract

AbstractLung cancer is one of the most common malignant tumors, and ranks high in the list of mortality due to cancers. Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Despite progress in the diagnosis and treatment of lung cancer, the prognosis of these patients remains dismal. Therefore, it is crucial to identify the predictors and treatment targets of lung cancer to provide appropriate treatments and improve patient prognosis. In this study, the gene modules related to immunotherapy were screened by weighted gene co-expression network analysis (WGCNA). Using unsupervised clustering, patients in The Cancer Genome Atlas (TCGA) were divided into three clusters based on the gene expression. Next, gene clustering was performed on the prognosis-related differential genes, and a six-gene prognosis model (comprising PLK1, HMMR, ANLN, SLC2A1, SFTPB, and CYP4B1) was constructed using least absolute shrinkage and selection operator (LASSO) analysis. Patients with LUAD were divided into two groups: high-risk and low-risk. Significant differences were found in the survival, immune cell infiltration, Tumor mutational burden (TMB), immune checkpoints, and immune microenvironment between the high- and low-risk groups. Finally, the accuracy of the prognostic model was verified in the Gene Expression Omnibus (GEO) dataset in patients with LUAD (GSE30219, GSE31210, GSE50081, GSE72094).

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3