Enhanced prediction of bolt support drilling pressure using optimized Gaussian process regression

Author:

Liu Jie

Abstract

AbstractThis study introduces a novel method for predicting drilling pressure in bolt support systems by optimizing Gaussian process time series regression (GPR) using hybrid optimization algorithms. The research initially identified significant variations in prediction outcomes based on different kernel functions and historical points combinations in the GPR algorithm. To address this, we explored 160 distinct schemes combining 10 kernel functions and 16 historical points for numerical analysis. Applying three hybrid optimization algorithms—Genetic Algorithm-GPR (GA-GPR), Particle Swarm Optimization-GPR (PSO-GPR), and Ant Colony Algorithm-GPR (ACA-GPR)—we iteratively optimized these key parameters. The PSO-GPR algorithm emerged as the most effective, achieving an 80% prediction accuracy with a deviation range of 1–2 MPa, acceptable in practical drilling operations. This optimization led to the RQ kernel function with 18 historical points as the optimal combination, yielding an RMSE value of 0.0047246, in contrast to the least effective combination (E kernel function with 6 historical points) producing an RMSE of 0.035704. The final outcome of this study is a robust and efficient prediction system for underground bolt support drilling pressure, verified through practical application. This approach significantly enhances the accuracy and efficiency of support systems in geotechnical engineering, demonstrating the practical applicability of the PSO-GPR model in real-world scenarios.

Funder

The key project of the China Coal Science and Industry Group

The Shanxi Tiandi Coal Mining Machinery Co., Ltd. Youth project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3