Author:
Fuse Yutaro,Nagashima Yoshitaka,Nishiwaki Hiroshi,Ohka Fumiharu,Muramatsu Yusuke,Araki Yoshio,Nishimura Yusuke,Ienaga Jumpei,Nagatani Tetsuya,Seki Yukio,Watanabe Kazuhiko,Ohno Kinji,Saito Ryuta
Abstract
AbstractChronic subdural hematoma (CSDH) often causes neurological deterioration and is treated with hematoma evacuation. This study aimed to assess the feasibility of various machine learning models to preoperatively predict the functional outcome of patients with CSDH. Data were retrospectively collected from patients who underwent CSDH surgery at two institutions: one for internal validation and the other for external validation. The poor functional outcome was defined as a modified Rankin scale score of 3–6 upon hospital discharge. The unfavorable outcome was predicted using four machine learning algorithms on an internal held-out cohort (n = 188): logistic regression, support vector machine (SVM), random forest, and light gradient boosting machine. The prediction performance of these models was also validated in an external cohort (n = 99). The area under the curve of the receiver operating characteristic curve (ROC-AUC) of each machine learning-based model was found to be high in both validations (internal: 0.906–0.925, external: 0.833–0.860). In external validation, the SVM model demonstrated the highest ROC-AUC of 0.860 and accuracy of 0.919. This study revealed the potential of machine learning algorithms in predicting unfavorable outcomes at discharge among patients with CSDH undergoing burr hole surgery.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献