Clinical utility of brain-derived neurotrophic factor as a biomarker with left ventricular echocardiographic indices for potential diagnosis of coronary artery disease

Author:

Monisha K. G.,Prabu Paramasivam,Chokkalingam M.,Murugesan Ram,Milenkovic Dragan,Ahmed Shiek S. S. J.

Abstract

AbstractBrain-derived neurotrophic factor (BDNF) plays a central pivotal role in the development of the cardiovascular system. Recent evidence suggests that BDNF has adverse subclinical cardiac remodeling in participants with cardiovascular disease risk factors. Relating serum BDNF levels with two-dimensional echocardiographic indices will provide insights into the BDNF mediated pathophysiology in coronary artery disease (CAD) that may shed light upon potential diagnostic biomarkers. For the study, 221 participants were recruited and classified based on coronary angiogram examination as control (n = 105) and CAD (n = 116). All participants underwent routine blood investigation, two-dimensional echocardiography, and serum BDNF estimation. As a result, total cholesterol, triglyceride, low-density lipid, high-density lipid, HbA1c (glycosylated hemoglobin), serum creatinine, eosinophils, lymphocyte, monocytes, neutrophils, and platelets were significantly elevated in CAD individuals compared to controls. Notably, the serum BDNF was significantly lower in individuals with CAD (30.69 ± 5.45 ng/ml) than controls (46.58 ± 7.95 ng/ml). Multivariate regression analysis showed neutrophils, total cholesterol, left ventricular mass index, mitral inflow E/A ratio, and pulmonary vein AR duration were associated with low BDNF in CAD. Four independent support vector machine (SVM) models performed to ensure the BDNF level in the classification of CAD from healthy controls. Particularly, the model with serum BDNF concentration and blood parameters of CAD achieved significant improvement from 90.95 to 98.19% in detecting CAD from healthy controls. Overall, our analysis provides a significant molecular linkage between the serum BDNF level and cardiovascular function. Our results contribute to the emerging evidence of BDNF as a potential diagnostic value in CAD that might lead to clinical application.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3