Author:
Li Haoqi,Xi Jiaxin,Donaghue Adrienne G.,Keum Jong,Zhao Yao,An Ke,McKenzie Erica R.,Ren Fei
Abstract
AbstractPolydopamine (PDA) is an emerging nature-inspired biopolymer material that possesses many interesting properties including self-assembly and universal adhesion. PDA is also able to form coordination bonds with various metal ions, which can be reduced to metal nanoparticles (NPs) as a result of thermal annealing under protective environment. In this study, PDA has been utilized as a support material to synthesize Pt NPs in an aqueous solution at room temperature. The catalytic performance of the resulting PDA-Pt nanocomposite was evaluated using an electrochemical workstation which showed comparable activity to Pt/C material for hydrogen evolution reaction (HER). Furthermore, Cu, Ni, and Cu–Ni NPs supported on PDA were also obtained using this strategy with assistance of subsequent thermal annealing. The phase evolution of the NPs was studied by in-situ X-ray diffraction while the morphology of the nanoparticles was investigated using electron microscopic techniques. Preliminary results showed the NPs supported on PDA also possessed HER activity. This work demonstrates that PDA can be utilized as a potential support for synthesis of metal NPs that can be exploited in engineering applications such as catalysts.
Publisher
Springer Science and Business Media LLC
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献