Microcracking of strawberry fruit cuticles: mechanism and factors

Author:

Hurtado Grecia,Knoche Moritz

Abstract

AbstractMicroscopic cracks in the cuticle (microcracks) are the first symptom of the strawberry fruit disorder ‘water soaking’ in which the fruit surface appears watery, translucent, and pale. Water soaking severely impacts fruit quality. The objective was to investigate the factors and mechanisms of cuticular microcracking in strawberry. Fluorescence microscopy revealed numerous microcracks in the achene depressions, on the rims between depressions and at the bases of trichomes. Microcracks in the achene depressions and on the rims were either parallel or transversely oriented relative to a radius drawn from the rim to the point of attachment of the achene. In the achene depression, the frequency of microcracks with parallel orientation decreased from the calyx end of the fruit, towards the fruit tip, while the frequency of those with transverse orientation remained constant. Most microcracks occurred above the periclinal cell walls of the epidermal cells. The long axes of the epidermal cells were primarily parallel-oriented. Microcracking increased during fruit development. Cuticle mass per fruit remained constant as fruit surface area increased but cuticle thickness decreased. When fruit developed under high relative humidity (RH) conditions, the cuticle had more microcracks than under low RH conditions. Exposing the fruit surface to increasing RHs, increased microcracking, especially above 75% RH. Liquid-phase water on the fruit surface was markedly more effective in inducing microcracking than high vapor-phase water (high RH). The results demonstrate that a combination of surface area growth strain and water exposure is causal in inducing microcracking of the strawberry cuticle.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3