Single-nucleus RNA velocity reveals critical synaptic and cell-cycle dysregulations in neuropathologically confirmed Alzheimer’s disease

Author:

Adewale Quadri,Khan Ahmed F.,Bennett David A.,Iturria-Medina YasserORCID

Abstract

AbstractTypical differential single-nucleus gene expression (snRNA-seq) analyses in Alzheimer’s disease (AD) provide fixed snapshots of cellular alterations, making the accurate detection of temporal cell changes challenging. To characterize the dynamic cellular and transcriptomic differences in AD neuropathology, we apply the novel concept of RNA velocity to the study of single-nucleus RNA from the cortex of 60 subjects with varied levels of AD pathology. RNA velocity captures the rate of change of gene expression by comparing intronic and exonic sequence counts. We performed differential analyses to find the significant genes driving both cell type-specific RNA velocity and expression differences in AD, extensively compared these two transcriptomic metrics, and clarified their associations with multiple neuropathologic traits. The results were cross-validated in an independent dataset. Comparison of AD pathology-associated RNA velocity with parallel gene expression differences reveals sets of genes and molecular pathways that underlie the dynamic and static regimes of cell type-specific dysregulations underlying the disease. Differential RNA velocity and its linked progressive neuropathology point to significant dysregulations in synaptic organization and cell development across cell types. Notably, most of the genes underlying this synaptic dysregulation showed increased RNA velocity in AD subjects compared to controls. Accelerated cell changes were also observed in the AD subjects, suggesting that the precocious depletion of precursor cell pools might be associated with neurodegeneration. Overall, this study uncovers active molecular drivers of the spatiotemporal alterations in AD and offers novel insights towards gene- and cell-centric therapeutic strategies accounting for dynamic cell perturbations and synaptic disruptions.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3