Author:
Artemov Vasily G.,Uykur Ece,Roh Seulki,Pronin Artem V.,Ouerdane Henni,Dressel Martin
Abstract
AbstractThe most common species in liquid water, next to neutral $$\hbox {H}_2\hbox {O}$$H2O molecules, are the $$\hbox {H}_3\hbox {O}^+$$H3O+ and $$\hbox {OH}^-$$OH- ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living $$\hbox {H}_3\hbox {O}^+$$H3O+, $$\hbox {DH}_2\hbox {O}^+$$DH2O+, $$\hbox {HD}_2\hbox {O}^+$$HD2O+, and $$\hbox {D}_3\hbox {O}^+$$D3O+ ions in the IR spectra of light ($$\hbox {H}_2\hbox {O}$$H2O), heavy ($$\hbox {D}_2\hbox {O}$$D2O), and semi-heavy (HDO) water. We find that short-living ions, with concentrations reaching $$\sim 2\%$$∼2% of the content of water molecules, coexist with long-living pH-active ions on the picosecond timescale, thus making liquid water an effective ionic liquid in femtochemistry.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Amir, W. et al. Time-resolved observation of the Eigen cation in liquid water. J. Chem. Phys. 126, 034511 (2007).
2. Bell, R. P. Proton in Chemistry (Cornell University Press, Ithaca, 1959).
3. Bodi, A., Csontos, J., Kállay, M., Borkar, S. & Sztáray, B. On the protonation of water. Chem. Sci. 5, 3057 (2014).
4. de Grotthuss, C. Theory of decomposition of liquids by electrical currents. Ann. Chim. 58, 54–74 (1806) ((in French)).
5. Falk, M. & Giguére, P. A. Infrared spectrum of the $$\text{ H }_3\text{ O }^+$$ ion in aqueous solutions. Can. J. Chem. 35, 1195 (1957).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献