Measuring vibrations on a biofidelic brain using ferroelectret nanogenerator

Author:

Dsouza Henry,Dávila-Montero Bianca M.,Afanador Ian Gonzalez,Torres Gerardo Morales,Cao Yunqi,Mejia-Alvarez Ricardo,Sepúlveda Nelson

Abstract

AbstractOur knowledge of traumatic brain injury has been fast growing with the emergence of new markers pointing to various neurological changes that the brain undergoes during an impact or any other form of concussive event. In this work, we study the modality of deformations on a biofidelic brain system when subject to blunt impacts, highlighting the importance of the time-dependent behavior of the resulting waves propagating through the brain. This study is carried out using two different approaches involving optical (Particle Image Velocimetry) and mechanical (flexible sensors) in the biofidelic brain. Results show that the system has a natural mechanical frequency of $$\sim $$ 25 oscillations per second, which was confirmed by both methods, showing a positive correlation with one another. The consistency of these results with previously reported brain pathology validates the use of either technique, and establishes a new, simpler mechanism to study brain vibrations by using flexible piezoelectric patches. The visco-elastic nature of the biofidelic brain is validated by observing the the relationship between both methods at two different time intervals, by using the information of the strain and stress inside the brain from the Particle Image Velocimetry and flexible sensor, respectively. A non-linear stress-strain relationship was observed and justified to support the same.

Funder

Directorate for Engineering

National Social Science Fund of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3