Fragility Limits Performance in Complex Networks

Author:

Pasqualetti FabioORCID,Zhao Shiyu,Favaretto ChiaraORCID,Zampieri Sandro

Abstract

AbstractWhile numerous studies have suggested that large natural, biological, social, and technological networks are fragile, convincing theories are still lacking to explain why natural evolution and human design have failed to optimize networks and avoid fragility. In this paper we provide analytical and numerical evidence that a tradeoff exists in networks with linear dynamics, according to which general measures of robustness and performance are in fact competitive features that cannot be simultaneously optimized. Our findings show that large networks can either be robust to variations of their weights and parameters, or efficient in responding to external stimuli, processing noise, or transmitting information across long distances. As illustrated in our numerical studies, this performance tradeoff seems agnostic to the specific application domain, and in fact it applies to simplified models of ecological, neuronal, and traffic networks.

Funder

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3