Photosynthetic protein classification using genome neighborhood-based machine learning feature

Author:

Sangphukieo ApiwatORCID,Laomettachit Teeraphan,Ruengjitchatchawalya Marasri

Abstract

AbstractIdentification of novel photosynthetic proteins is important for understanding and improving photosynthetic efficiency. Synergistically, genome neighborhood can provide additional useful information to identify photosynthetic proteins. We, therefore, expected that applying a computational approach, particularly machine learning (ML) with the genome neighborhood-based feature should facilitate the photosynthetic function assignment. Our results revealed a functional relationship between photosynthetic genes and their conserved neighboring genes observed by ‘Phylo score’, indicating their functions could be inferred from the genome neighborhood profile. Therefore, we created a new method for extracting patterns based on the genome neighborhood network (GNN) and applied them for the photosynthetic protein classification using ML algorithms. Random forest (RF) classifier using genome neighborhood-based features achieved the highest accuracy up to 87% in the classification of photosynthetic proteins and also showed better performance (Mathew’s correlation coefficient = 0.718) than other available tools including the sequence similarity search (0.447) and ML-based method (0.361). Furthermore, we demonstrated the ability of our model to identify novel photosynthetic proteins compared to the other methods. Our classifier is available at http://bicep2.kmutt.ac.th/photomod_standalone, https://bit.ly/2S0I2Ox and DockerHub: https://hub.docker.com/r/asangphukieo/photomod.

Funder

King Mongkut's University of Technology Thonburi

National Research Council of Thailand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Design of Antithrombotic Peptide Targeting Collagen;Langmuir;2024-04-26

2. A Biological Data-Driven Mining Technique by Using Hybrid Classifiers With Rough Set;Research Anthology on Bioinformatics, Genomics, and Computational Biology;2023-12-29

3. Plant Protein Classification Using K-mer Encoding;Computational Intelligence and Network Systems;2023-12-16

4. Improving the performance of machine learning models for biotechnology: The quest for deus ex machina;Biotechnology Advances;2021-12

5. A Biological Data-Driven Mining Technique by Using Hybrid Classifiers With Rough Set;International Journal of Ambient Computing and Intelligence;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3