Dissolution behavior of radiocesium-bearing microparticles as a function of solution compositions

Author:

Okumura Taiga,Yamaguchi Noriko,Kogure Toshihiro

Abstract

AbstractMore than a decade has passed since the Fukushima nuclear accident in 2011 and contamination around the nuclear power plant is primarily caused by 137Cs. One of the materials retaining radiocesium in the environment is radiocesium-bearing silicate glass microparticles (CsMPs), which have not been reported in previous nuclear accidents. Although the prediction of environmental fates of CsMPs is of interest because of their extremely high specific radioactivity, knowledge about their physicochemical properties is still limited. Here we show that the dissolution behavior of CsMPs is comparable to that of silica-rich glass and significantly depends on the surrounding environment. CsMP dissolution experiments were conducted in solutions with various solute components and pH levels at 60 °C. In neutral and basic solutions, the estimated dissolution rate was accelerated by alkali ions such as Na+, which is known to play a catalytic role for the dissolution of silica. In contrast, the dissolution in acid was slow even in the presence of alkali ions. The dissolution under acid conditions was possibly retarded by a thin amorphous silica layer formed on the CsMP surfaces. Such characteristics of the dissolution are consistent with that of silica-rich glass. To infer the dissolution behavior of CsMPs in the human body, the dissolution rate in Ringer’s solution at 37 °C was estimated as 1.00 ± 0.37 μm/year.

Funder

Japan Society for the Promotion of Science

Ministry of Agriculture, Forestry and Fisheries

Japan Atomic Energy Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3