The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH

Author:

Hughes Gareth W.ORCID,Ridley CarolineORCID,Collins Richard,Roseman Alan,Ford Robert,Thornton David J.ORCID

Abstract

AbstractThe polymeric mucin MUC5B provides the structural and functional framework of respiratory mucus, conferring both viscoelastic and antimicrobial properties onto this vital protective barrier. Whilst it is established that MUC5B forms disulfide-linked linear polymers, how this relates to their packaging in secretory granules, and their molecular form in mucus remain to be fully elucidated. Moreover, the role of the central heavily O-glycosylated mucin domains in MUC5B conformation is incompletely described. Here we have completed a detailed structural analysis on native MUC5B polymers purified from saliva and subsequently investigated how MUC5B conformation is affected by changes in calcium concentration and pH, factors important for mucin intragranular packaging and post-secretory expansion. The results identify that MUC5B has a beaded structure repeating along the polymer axis and suggest that these repeating motifs arise from distinct glycosylation patterns. Moreover, we demonstrate that the conformation of these highly entangled linear polymers is sensitive to calcium concentration and changes in pH. In the presence of calcium (Ca2+, 10 mM) at pH 5.0, MUC5B adopted a compact conformation which was lost either upon removal of calcium with EGTA, or by increasing the pH to 7.4. These results suggest a pathway of mucin collapse to enable intracellular packaging and mechanisms driving mucin expansion following secretion. They also point to the importance of the tight control of calcium and pH during different stages of mucin biosynthesis and secretion, and in the generation of correct mucus barrier properties.

Funder

RCUK | Medical Research Council

Cystic Fibrosis Foundation Therapeutics

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3