Contrast phase recognition in liver computer tomography using deep learning

Author:

Rocha Bruno Aragão,Ferreira Lorena Carneiro,Vianna Luis Gustavo Rocha,Ferreira Luma Gallacio Gomes,Ciconelle Ana Claudia Martins,Da Silva Noronha Alex,Cortez Filho João Martins,Nogueira Lucas Salume Lima,Leite Jean Michel Rocha Sampaio,da Silva Filho Maurício Ricardo Moreira,da Costa Leite Claudia,de Maria Felix Marcelo,Gutierrez Marco Antônio,Nomura Cesar Higa,Cerri Giovanni Guido,Carrilho Flair José,Ono Suzane Kioko

Abstract

AbstractHepatocellular carcinoma (HCC) has become the 4th leading cause of cancer-related deaths, with high social, economical and health implications. Imaging techniques such as multiphase computed tomography (CT) have been successfully used for diagnosis of liver tumors such as HCC in a feasible and accurate way and its interpretation relies mainly on comparing the appearance of the lesions in the different contrast phases of the exam. Recently, some researchers have been dedicated to the development of tools based on machine learning (ML) algorithms, especially by deep learning techniques, to improve the diagnosis of liver lesions in imaging exams. However, the lack of standardization in the naming of the CT contrast phases in the DICOM metadata is a problem for real-life deployment of machine learning tools. Therefore, it is important to correctly identify the exam phase based only on the image and not on the exam metadata, which is unreliable. Motivated by this problem, we successfully created an annotation platform and implemented a convolutional neural network (CNN) to automatically identify the CT scan phases in the HCFMUSP database in the city of São Paulo, Brazil. We improved this algorithm with hyperparameter tuning and evaluated it with cross validation methods. Comparing its predictions with the radiologists annotation, it achieved an accuracy of 94.6%, 98% and 100% in the testing dataset for the slice, volume and exam evaluation, respectively.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3