Author:
Ghareeb Rehab Y.,Shams El-Din Nihal Galal El-Din,Maghraby Dahlia M. El,Ibrahim Dina S. S.,Abdel-Megeed Ahmed,Abdelsalam Nader R.
Abstract
AbstractThe purpose of this study was to test the nematicidal activity of extracts of two marine algae (Colpomenia sinuosa and Corallina mediterranea) and their synthesized silver nanoparticles against root-knot nematodes (Meloidogyne incognita) that infest tomato plants. Scanning electron microscopy (SEM) revealed that nanoparticles had aggregated into anisotropic Ag particles, and transmission electron microscopy (TEM) revealed that the particle sizes were less than 40 nm. Fourier Transform Infrared Spectroscopy (FT-IR) analysis revealed that the obtained nanoparticles had a sharp absorbance between 440 and 4000 cm−1, with 13 distinct peaks ranging from 474 to 3915 cm−1. Methylene chloride extracts and nanoparticles synthesized from both algae species were used to treat M. incognita. C. sinuosa nanoparticles had the highest nematicidal activity of any treatment. Furthermore, and in contrast to other treatments, C. sinuosa nanoparticles reduced the number of nematode galls, egg-masses per root, and eggs/egg mass, while also improving plant growth parameters. C. sinuosa's methylene chloride extract was more active than C. mediterranea's, and the most effective eluent of this solvent was hexane: methylene chloride: ethyl acetate (1: 0.5: 0.5, v/v/v). When applied to M. incognita, the third fraction of this eluent was the most effective, resulting in 87.5% mortality after 12 h and 100% mortality after 24 and 72 h of exposure. The presence of seven bioactive constituents was discovered during the analysis of this fraction. In conclusion, the silver nanoparticles synthesized from C. sinuosa could be used as alternative chemical nematicides.
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献