A time evolving online social network generation algorithm

Author:

Shirzadian Pouyan,Antony Blessy,Gattani Akshaykumar G.,Tasnina Nure,Heath Lenwood S.

Abstract

AbstractThe rapid growth of online social media usage in our daily lives has increased the importance of analyzing the dynamics of online social networks. However, the dynamic data of existing online social media platforms are not readily accessible. Hence, there is a necessity to synthesize networks emulating those of online social media for further study. In this work, we propose an epidemiology-inspired and community-based, time-evolving online social network generation algorithm (EpiCNet), to generate a time-evolving sequence of random networks that closely mirror the characteristics of real-world online social networks. Variants of the algorithm can produce both undirected and directed networks to accommodate different user interaction paradigms. EpiCNet utilizes compartmental models inspired by mathematical epidemiology to simulate the flow of individuals into and out of the online social network. It also employs an overlapping community structure to enable more realistic connections between individuals in the network. Furthermore, EpiCNet evolves the community structure and connections in the simulated online social network as a function of time and with an emphasis on the behavior of individuals. EpiCNet is capable of simulating a variety of online social networks by adjusting a set of tunable parameters that specify the individual behavior and the evolution of communities over time. The experimental results show that the network properties of the synthetic time-evolving online social network generated by EpiCNet, such as clustering coefficient, node degree, and diameter, match those of typical real-world online social networks such as Facebook and Twitter.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3