Optical phase retrieving of a projected object by employing a differentiation of a single pattern of two-beam interference

Author:

Ramadan W. A.,El-Tawargy A. S.,Wahba H. H.

Abstract

AbstractIn this work, we present a new approach to retrieve the optical phase map of an object which is projected by a single differentiated two-beam interference pattern. This approach is based on the differentiation of the intensity equation of the two-beam interference with respect to the carrier’s phase angle. Therefore, two interference patterns which are shifted by a very small phase angle can be obtained. Then, these two patterns are projected on the object. By exploiting the definition of the mathematical differentiation, the optical phase object’s variations are retrieved from the recorded intensity distributions of both projected patterns. According to this method, the extracted optical phase angles are raised as an inverse “sin” function. This means that the unwrapping process of this function limits the recovered phase angles between − π/2 and π/2. So, the unwrapping process of these unusual wrapped phase angles is explained. The proposed method is applied on (a) two objects which are simulated by combinations of multiple Gaussian functions and (b) a 3D real object. It is found that the inclination of the projected interference pattern on the object redistributes the intensity distribution due to the Lamber’s “cos” aw of illumination. This effect is considered in the retrieving process of the object’s phase map. The limitations of the presented method are discussed and the obtained results are found promising.

Funder

Science and Technology Development Fund

Damiatta University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3