Thermal and solute aspects among two viscosity models in synovial fluid inserting suspension of tri and hybrid nanomaterial using finite element procedure

Author:

Nazir Umar,Sohail Muhammad,Kumam Poom,Elmasry Yasser,Sitthithakerngkiet Kanokwan,Ali Mohamed R.,Khan Muhammad Jahangir,Galal Ahmed M.

Abstract

AbstractInclusion of nanoparticles boosts thermal performance and is essential for thermal transport. The current investigation has been made to conduct research on heat mass transport in synovial material with the mixing of hybrid and tri-hybrid comprising variable viscosity past over a heated surface having constant density and a steady environment. The conservation laws have been considered in the presence of Lorentz force, heat generation/absorption, modified heat and mass fluxes together with chemical reaction. The mathematical model is developed in Cartesian coordinate in the form of coupled partial differential equation (PDEs). The derived PDEs are simplified by a boundary layer approach (BLA) and reduced PDEs have been converted into ordinary differential equation (ODEs) using scaling group Similarity transformation. The converted ODEs are highly nonlinear and have been solved numerically by finite elements scheme (FES). The used scheme is effective for nonlinear problem and can be frequently utilized to tackle nonlinear problems arising in mathematical physics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3