Physics to system-level modeling of silicon-organic-hybrid nanophotonic devices

Author:

Moridsadat Maryam,Tamura Marcus,Chrostowski Lukas,Shekhar Sudip,Shastri Bhavin J.

Abstract

AbstractThe continuous growth in data volume has sparked interest in silicon-organic-hybrid (SOH) nanophotonic devices integrated into silicon photonic integrated circuits (PICs). SOH devices offer improved speed and energy efficiency compared to silicon photonics devices. However, a comprehensive and accurate modeling methodology of SOH devices, such as modulators corroborating experimental results, is lacking. While some preliminary modeling approaches for SOH devices exist, their reliance on theoretical and numerical methodologies, along with a lack of compatibility with electronic design automation (EDA), hinders their seamless and rapid integration with silicon PICs. Here, we develop a phenomenological, building-block-based SOH PICs simulation methodology that spans from the physics to the system level, offering high accuracy, comprehensiveness, and EDA-style compatibility. Our model is also readily integrable and scalable, lending itself to the design of large-scale silicon PICs. Our proposed modeling methodology is agnostic and compatible with any photonics-electronics co-simulation software. We validate this methodology by comparing the characteristics of experimentally demonstrated SOH microring modulators (MRMs) and Mach Zehnder modulators with those obtained through simulation, demonstrating its ability to model various modulator topologies. We also show our methodology's ease and speed in modeling large-scale systems. As an illustrative example, we use our methodology to design and study a 3-channel SOH MRM-based wavelength-division (de)multiplexer, a widely used component in various applications, including neuromorphic computing, data center interconnects, communications, sensing, and switching networks. Our modeling approach is also compatible with other materials exhibiting the Pockels and Kerr effects. To our knowledge, this represents the first comprehensive physics-to-system-level EDA-compatible simulation methodology for SOH modulators.

Funder

Natural Sciences and Engineering Research Council of Canada

Schmidt Science Polymath Award.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3