Defining drinking water metal contaminant mixture risk by coupling zebrafish behavioral analysis with citizen science

Author:

Babich Remy,Craig Emily,Muscat Abigail,Disney Jane,Farrell Anna,Silka Linda,Jayasundara Nishad

Abstract

AbstractContaminated drinking water is an important public health consideration in New England where well water is often found to contain arsenic and other metals such as cadmium, lead, and uranium. Chronic or high level exposure to these metals have been associated with multiple acute and chronic diseases, including cancers and impaired neurological development. While individual metal levels are often regulated, adverse health effects of metal mixtures, especially at concentrations considered safe for human consumption remain unclear. Here, we utilized a multivariate analysis that examined behavioral outcomes in the zebrafish model as a function of multiple metal chemical constituents of 92 drinking well water samples, collected in Maine and New Hampshire. To collect these samples, a citizen science approach was used, that engaged local teachers, students, and scientific partners. Our analysis of 4016 metal-mixture combinations shows that changes in zebrafish behavior are highly mixture dependent, and indicate that certain combinations of metals, especially those containing arsenic, cadmium, lead, and uranium, even at levels considered safe in drinking water, are significant drivers of behavioral toxicity. Our data emphasize the need to consider low-level chemical mixture effects and provide a framework for a more in-depth analysis of drinking water samples. We also provide evidence for the efficacy of utilizing citizen science in research, as the broader impact of this work is to empower local communities to advocate for improving their own water quality.

Funder

National Science Foundation

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3