Author:
Matsuki Akari,Kori Hiroshi,Kobayashi Ryota
Abstract
AbstractRhythmic activity is ubiquitous in biological systems from the cellular to organism level. Reconstructing the instantaneous phase is the first step in analyzing the essential mechanism leading to a synchronization state from the observed signals. A popular method of phase reconstruction is based on the Hilbert transform, which can only reconstruct the interpretable phase from a limited class of signals, e.g., narrow band signals. To address this issue, we propose an extended Hilbert transform method that accurately reconstructs the phase from various oscillatory signals. The proposed method is developed by analyzing the reconstruction error of the Hilbert transform method with the aid of Bedrosian’s theorem. We validate the proposed method using synthetic data and show its systematically improved performance compared with the conventional Hilbert transform method with respect to accurately reconstructing the phase. Finally, we demonstrate that the proposed method is potentially useful for detecting the phase shift in an observed signal. The proposed method is expected to facilitate the study of synchronization phenomena from experimental data.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Japan Agency for Medical Research and Development
Moonshot Research and Development Program
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献