Optical properties of a hexagonal C/BN framework with sp2 and sp3 hybridized bonds

Author:

Bu Hongxia,Zheng Haibin,Zhang Hongyu,Yuan Huimin,Zhao Jingfen

Abstract

AbstractWe investigated the optical properties and roles of sp2- and sp3-hybridized bonds of a hexagonal C/BN family using first-principles calculations. The calculated phonon dispersions confirm the dynamic stability of Hex-(BN)6C12 and Hex-C12(BN)6. The complex dielectric function evolves from the infrared to the ultraviolet region and has a significant anisotropy for different polarizations. The reflectivity and refractive index spectra show that the sp2-hybridized C atoms are more sensitive to the light from infrared to visible region than B-N pairs while the C atoms and B-N pairs have a similar sensitivity to high frequencies. The sharp peaks of the energy-loss spectrum are all concentrated in the 23–30 eV energy region, which can be used to identify these hexagonal structures. The calculated band structures show Hex-C24 and Hex-(BN)6C12 are metals, but Hex-C12(BN)6 and Hex-(BN)12 are semiconductors with indirect band gaps of 3.47 and 3.25 eV, respectively. The electronic states near the Fermi level primarily originate from sp2-hybridized atoms. In addition, sp2-hybridized bonds are the main elements affecting the optical and electronic structure of C/BN materials with sp2- and sp3-hybridizations. We expect that the results presented will help understand the optical properties of C/BN materials containing sp2- and sp3-hybridized C atoms and B-N pairs.

Funder

Natural Science Foundation of Shandong Province

Scientific Research in Universities of Shandong Province((No. J16LJ06)) and Foundation of Qilu Normal University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3