The plant growth, water and electricity consumption, and nutrients uptake are influenced by different light spectra and nutrition of lettuce

Author:

Soufi Hamid Reza,Roosta Hamid Reza,Hamidpour Mohsen

Abstract

AbstractThe aim of this study was to investigate the effect of different replacement methods of nutrient solution (complete replacement, electrical conductivity (EC)- based replacement, and replacing based on the plant needs) and different LED light spectra (monochromic white, red, blue, and a combination of red/blue) on the uptake of mineral nutrients, water and electricity consumption and biomass production of two varieties of lettuce (Lollo Rossa and Lollo Bionda; Lactuca sativa var. crispa) in the hydroponic systems. The results showed that replacement methods based on the plant needs and based on EC increased shoot fresh mass and yield index in the NFT system. Also, results showed that the combination of red/blue light increased shoot fresh mass and yield index in the NFT system and in the plant factory under treatment by replacement method based on plant needs. Increasing the concentrations of N, K, and Zn and loss of Fe in nutrient solution were observed in all three replacement methods of nutrient solution in the NFT system. Water consumption was decreased under plant nutrition based on plant needs and based on EC. In the plant factory, the application of LED light spectrum also decreased electricity consumption and cost against fluorescent lamps. In general, it is concluded that nutrient solution replacement based on the plant needs and based on EC and the use of different LED light spectra (especially the combination of red and blue light) can be used to reduce the consumption of water and nutrients in the hydroponic cultivation of lettuce.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3