Ecophysiological and behavioural response of juveniles of the Chilean cold-water coral Caryophyllia (Caryophyllia) huinayensis to increasing sediment loads

Author:

Fähse MelanieORCID,Orejas CovadongaORCID,Titschack JürgenORCID,Försterra Günter,Richter ClaudioORCID,Laudien JürgenORCID

Abstract

AbstractChilean Patagonia is a hotspot of biodiversity, harbouring cold-water corals (CWCs) that populate steep walls and overhangs of fjords and channels. Through anthropogenic activities such as deforestation, roadworks, aquafarming and increased landslide frequency, sediment input increases in the fjord region. While the absence of CWCs on moderately steep slopes has been suggested to reflect high vulnerability to sedimentation, experimental evidence has been lacking. Here, we investigated the sensitivity of CWCs to sediment stress, using juvenile Caryophyllia (Caryophyllia) huinayensis as a model. A 12-week aquarium experiment was conducted with three sediment loads: the average natural sediment concentration in Comau Fjord, 100- and 1000-fold higher sediment levels, expected from gravel road use and coastal erosion. Changes in coral mass and calyx dimensions, polyp expansion, tissue retraction and respiration were measured. For CWCs exposed to two and three order of magnitude higher sediment concentrations, 32% and 80% of the animals experienced a decrease in tissue cover, respectively, along with a decrease in respiration rate of 34% and 66%. Under the highest concentration corals showed reduced polyp expansion and a significantly reduced growth of ~ 95% compared to corals at natural concentration. The results show that C.huinayensis is affected by high sediment loads. As human activities that increase sedimentation steadily intensify, coastal planners need to consider detrimental effects on CWCs.

Funder

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, programme ‘Changing Earth – Sustaining our Future’

Hanse-Wissenschaftskolleg Institute for Advanced Study

Cluster of Excellence ›The Ocean Floor – Earth’s Uncharted Interface‹

Fondecyt project

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3