Poverty prediction using E-commerce dataset and filter-based feature selection approach

Author:

Wijaya Dedy Rahman,Ibadurrohman Raden Ilham Fadhilah,Hernawati Elis,Wikusna Wawa

Abstract

AbstractPoverty is a problem that occurs in many countries, notably in Indonesia. The common methods used to obtain poverty information are surveys and censuses. However, this process takes a long time and uses a lot of human resources. On the other hand, governments and policymakers need a faster approach to know social-economic conditions for area development plans. Hence, in this paper, we develop e-commerce data and machine learning algorithms as a proxy for poverty levels that can provide faster information than surveys or censuses. The e-commerce dataset is used and this high-dimensional data becomes a challenge. Hence, feature selection algorithms are employed to determine the best features before building a machine learning model. Furthermore, three machine learning algorithms such as support vector regression, linear regression, and k-nearest neighbor are compared to predict the poverty rate. Hence, the contribution of this paper is to propose the combination of statistical-based feature selection and machine learning algorithms to predict the poverty rate based on e-commerce data. According to the experimental results, the combination of f-score feature selection and support vector regression surpasses other methods. It shows that e-commerce data and machine learning algorithms can be potentially used as a proxy for predicting poverty.

Funder

Telkom University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3