Immunogenic cell death-based prognostic model for predicting the response to immunotherapy and common therapy in lung adenocarcinoma

Author:

Zhou Xiang,Xu Ran,Lu Tong,Wang Chenghao,Chang Xiaoyan,Peng Bo,Shen Zhiping,Yao Lingqi,Wang Kaiyu,Xu Chengyu,Shi Jiaxin,Zhang Ren,Zhao Jiaying,Zhang Linyou

Abstract

AbstractLung adenocarcinoma (LUAD) is a malignant tumor in the respiratory system. The efficacy of current treatment modalities varies greatly, and individualization is evident. Therefore, finding biomarkers for predicting treatment prognosis and providing reference and guidance for formulating treatment options is urgent. Cancer immunotherapy has made distinct progress in the past decades and has a significant effect on LUAD. Immunogenic Cell Death (ICD) can reshape the tumor’s immune microenvironment, contributing to immunotherapy. Thus, exploring ICD biomarkers to construct a prognostic model might help individualized treatments. We used a lung adenocarcinoma (LUAD) dataset to identify ICD-related differentially expressed genes (DEGs). Then, these DEGs were clustered and divided into subgroups. We also performed variance analysis in different dimensions. Further, we established and validated a prognostic model by LASSO Cox regression analysis. The risk score in this model was used to evaluate prognostic differences by survival analysis. The treatment prognosis of various therapies were also predicted. LUAD samples were divided into two subgroups. The ICD-high subgroup was related to an immune-hot phenotype more sensitive to immunotherapy. The prognostic model was constructed based on six ICD-related DEGs. We found that high-risk score patients responded better to immunotherapy. The ICD prognostic model was validated as a standalone factor to evaluate the ICD subtype of individual LUAD patients, which might contribute to more effective therapies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3