Bio-assisted synthesized Ag(0) nanoparticles stabilized on hybrid of sepiolite and chitin: efficient catalytic system for xanthene synthesis

Author:

Kahangi Fatemeh Ghoreyshi,Mehrdad Morteza,Heravi Majid M.,Sadjadi Samahe

Abstract

AbstractIn this work, with the use of two natural compounds, chitin and sepiolite clay, a novel covalent hybrid is fabricated and applied as a support for the stabilization of silver nanoparticles with the aid of Kombucha extract as a natural reducing agent. The resultant catalytic system, Ag@Sep-N–CH, was characterized via XRD, TEM, FTIR, ICP, SEM, TGA, UV–Vis and BET. It was found that fine Ag(0) nanoparticles with mean diameter of 6.1 ± 1.8 nm were formed on the support and the specific surface area of the catalyst was 130 m2 g−1. The study of the catalytic performance of Ag@Sep-N–CH for catalyzing synthesis of xanthenes in aqueous media under mild reaction condition confirmed that Ag@Sep-N–CH exhibited high catalytic activity and could promote the reaction of various substrates to furnish the corresponding products in high yields. Moreover, the contribution of both chitin and sepiolite to the catalysis has been affirmed. It was found that hybridization of these two components led to synergistic effects and consequently improved the observed catalytic activity. Notably, the catalyst was recyclable up to several reaction runs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3