Author:
Allwright Michael,Guennewig Boris,Hoffmann Anna E.,Rohleder Cathrin,Jieu Beverly,Chung Long H.,Jiang Yingxin C.,Lemos Wimmer Bruno F.,Qi Yanfei,Don Anthony S.,Leweke F. Markus,Couttas Timothy A.
Abstract
AbstractThe analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography–tandem mass spectrometry (LC–MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC–MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC–MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC–MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.
Funder
Medical Research Futures Fund
Brain and Intelligence Science (BISA) Sydney-Fudan University accelerator grant
National Health and Medical Research Council
Deputy Vice Chancellor-Start Up Funds, University of Sydney
Moriya Elizabeth Vine Fund
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献