COVID-19 vaccination exacerbates ex vivo IL-6 release from isolated PBMCs

Author:

Langgartner Dominik,Winkler Raphael,Brunner-Weisser Jonas,Rohleder Nicolas,Jarczok Marc N.,Gündel Harald,Weimer Katja,Reber Stefan O.

Abstract

AbstractEx vivo culturing of isolated PBMCs from individuals vaccinated with the coronavirus disease 2019 (COVID-19) vaccine BNT162b1 revealed a pronounced T cell response in the presence of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The latter was 10-fold more pronounced than the ex vivo response of PBMCs from the same individuals to other common pathogen T cell epitope pools, suggesting COVID-19 vaccination to induce RBD-specific T cell responses and not to facilitate T cell (re)activity in general. In the current study we investigated whether COVID-19 vaccination long-lastingly affects plasma interleukin (IL)-6 concentrations, complete blood counts, ex vivo IL-6 and IL-10 secretion of PBMCs cultured under basal conditions or in the presence of concanavalin (Con) A and lipopolysaccharide (LPS), salivary cortisol and α-amylase, mean arterial pressure (MAP), heart rate (HR) as well as mental and physical health status. The study was initially designed to investigate whether the presence vs. absence of own pets during urban upbringing has protective effects against psychosocial stress-induced immune activation during adulthood. However, as COVID-19 vaccines were approved while the study was ongoing and as, therefore, both vaccinated and non-vaccinated individuals have been recruited, we were able to stratify our data set with respect to the COVID-19 vaccination status and to assess the long-lasting effects of COVID-19 vaccination on physiological immunological, cardiovascular and psychosomatic health parameters. This data is presented in the current study. We show that isolated PBMCs from individuals vaccinated against COVID-19 show a ~ 600-fold increase in basal and a ~ 6000-fold increase in ConA-induced proinflammatory IL-6 secretion, and a ~ 2-fold increase in basal and ConA-induced antiinflammatory IL-10 secretion, both in comparison with non-vaccinated individuals. In contrast, LPS-induced ex vivo IL-6 and IL-10 secretions were not affected by vaccination status, as were plasma IL-6 concentrations, complete blood counts, salivary cortisol and α-amylase, cardiovascular measures and psychosomatic health. In summary, our findings are of relevance for many clinical studies ran before/during the pandemic, clearly indicating that consideration of participants’ vaccination status is critical, at least when assessing ex vivo PBMC functionality.

Funder

Universitätsklinikum Ulm

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3