Author:
Araya Tesfay,Mlahlwa Asiphe V.,Elbasit Mohamed A. M. Abd,Newete Solomon W.
Abstract
AbstractThe exotic Tamarix species, T. ramosissima and T. chinensis, were introduced into South Africa in the early 1900s reportedly either for ornamental or soil wind erosion control purposes in the mines. They are, however, currently invading several riparian ecosystems in the country and threatening its biodiversity and proper functioning. The objective of this study was to assess the effects of the exotic Tamarix species on the soil physicochemical properties vis-à-vis the indigenous Tamarix at the Leeu River in the Western Cape Province, of South Africa where they are purvasive. Three transects were laid from the riverbank towards the outer land, where the exotic followed by the native Tamarix species predominantly occurred. Soil was sampled from three points per transect and three soil depths (0–10, 10–20 and 20–30 cm) per point in winter and summer to determine selected soil physicochemical properties. The results showed that total nitrogen (TN), total carbon (TC), Sodium (Na), Potassium (K) and Magnesium (Mg) concentrations under the native and exotic Tamarix species were significantly higher than those in the open land without Tamarix species. The salinity under the native and exotic Tamarix species was greater (P < 0.05) in the topsoils (0–10 cm) than in the deeper soils (20–30 cm) with 5.05 mS cm−1 and 4.73 mS cm−1, respectively. Soil electrical conductivity (EC) was higher (P < 0.05) during the winter season under the exotic Tamarix species (5.05 mS cm−1) followed by the native species (4.73 mS cm−1) and it was the lowest in the control (0.16 mS cm−1) at 0–10 cm soil depth. Similarly, sodium and sodium absorption ratios (SAR) under the native and exotic Tamarix species were significantly greater than those in the control. The highest levels (P < 0.05) of TC were recorded at the topsoil (0–10 cm soil depth) under the exotic Tamarix species (1.17%), followed by the native Tamarix (1.07%) with the control recording the lowest (0.53%). There were no significant differences (P < 0.05) in K, TC, TN and SOC concentrations at lower soil depths (20–30 cm). The soil texture was significantly affected by the Tamarix species. The soil bulk density was lower under the exotic Tamarix followed by native Tamarix species than the control soils. The soil volumetric water content was higher under the exotic Tamarix species compared to the control. This study concludes that the invasion of the exotic and native Tamarix species altered the soil properties underneath and created conducive soil conditions for their predominance.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).
2. Pimentel, D. Biological invasionseconomic and environmental costs of alien plant, animal, and microbe species. No. 577.18 B5/2011. 2011.
3. Jackson, T. Addressing the economic costs of invasive alien species: Some methodological and empirical issues. Int. J. Sustain. Soc. 7(3), 221–240 (2015).
4. Walker, B. H. & Steffen, W. L. Interactive and integrated effects of global change on terrestrial ecosystems. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Synthesis Volume. International Geosphere-Biosphere Program Book Series 4 (eds Walker, B. et al.) 329–375 (Cambridge University Press, 1999).
5. Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48(8), 607–615 (1998).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献