Multiple scattering effects on intercept, size, polydispersity index, and intensity for parallel (VV) and perpendicular (VH) polarization detection in photon correlation spectroscopy

Author:

Ragheb Ragy,Nobbmann Ulf

Abstract

AbstractDynamic light scattering (DLS) is well established for rapid size, polydispersity, and size distribution determination of colloidal samples. While there are limitations in size range, resolution, and concentration, the technique has found ubiquitous applications from molecules to particles. With the ease of use of today’s commercial DLS instrumentation comes an inherent danger of misinterpretation or misapplication at the borderlines of suitability. In this paper, we show how comparison of different polarization components can help ascertain the presence of unwanted multiple scattering, which can lead to false conclusions about a sample’s mean size and polydispersity. We find that the contribution of multiple scattering events effectively reduces both the measured scattering intensity and the apparent size from the autocorrelation function. The intercept of the correlation function may serve as an indicator of relative strength of single to multiple scattering. Furthermore, the abundance of single scattering events at measurement positions close to the cell wall results in an apparent increase in uniformity yielding a lower polydispersity index which is more representative of the physical system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference16 articles.

1. Dahneke, B. E. Measurement of Suspended Particles by Quasi-elastic Light Scattering (Wiley, London, 1983).

2. Pecora, R. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, New York, 1985).

3. International Organization for Standardization, ISO 13321:1996(en) Particle size analysis – Photon correlation spectroscopy. https://www.iso.org/obp/ui/#iso:std:iso:13321:ed-1:v1:en (1996).

4. Siegert, A. J. F. On the Fluctuations in Signals Returned by Many Independently Moving Scatterers (Radiation Laboratory, Massachusetts Institute of Technology, Cambridge, 1943).

5. Sorensen, C. M., Mockler, R. C. & O’Sullivan, W. J. Depolarized correlation function of light double scattered from a system of Brownian particles. Phys. Rev. A 14, 1520–1532 (1976).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3