Intracranial recordings in humans reveal specific hippocampal spectral and dorsal vs. ventral connectivity signatures during visual, attention and memory tasks

Author:

Castelhano João,Duarte Isabel,Bernardino Inês,Pelle Federica,Francione Stefano,Sales Francisco,Castelo-Branco Miguel

Abstract

AbstractInvasive brain recordings using many electrodes across a wide range of tasks provide a unique opportunity to study the role of oscillatory patterning and functional connectivity. We used large-scale recordings (stereo EEG) within and beyond the human hippocampus to investigate the role of distinct frequency oscillations during real-time execution of visual, attention and memory tasks in eight epileptic patients. We found that activity patterns in the hippocampus showed task and frequency dependent properties. Importantly, we found distinct connectivity signatures, in particular concerning parietal-hippocampal connectivity, thus revealing large scale synchronization of networks involved in memory tasks. Comparing the power per frequency band, across tasks and hippocampal regions (anterior/posterior) we confirmed a main effect of frequency band (p = 0.002). Gamma band activity was higher for visuo-spatial memory tasks in the anterior hippocampus. Further, we found that alpha and beta band activity in posterior hippocampus had larger modulation for high memory load visual tasks (p = 0.004). Three functional connectivity task related networks were identified: (dorsal) parietal-hippocampus (visual attention and memory), ventral stream- hippocampus and hippocampal-frontal connections (mainly tasks involving face recognition or object based search). These findings support the critical role of oscillatory patterning in the hippocampus during visual and memory tasks and suggests the presence of task related spectral and functional connectivity signatures. These results show that the use of large scale human intracranial recordings can validate the role of oscillatory and functional connectivity patterns across a broad range of cognitive domains.

Funder

Fundação para a Ciência e a Tecnologia

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3