Quantitative estimation of closed cell porosity in low density ceramic composites using X-ray microtomography

Author:

Smith J. D.,Garcia C.,Rodriguez J.,Scharf T. W.

Abstract

AbstractX-ray Microtomography is a proven tool for phase fraction analysis of multi-phase systems, provided that each phase is adequately partitioned by some means of data processing. For porosity in materials containing low-density ceramic phases, differentiation between pores and the low-density phase(s) can be intractable due to low scattering in the low-density phase, particularly if small pores necessitate low binning. We present a novel, combined methodology for accurate porosity analysis—despite these shortcomings. A 3-stage process is proposed, consisting of (1) Signal/noise enhancement using non-local means denoising, (2) Phase segmentation using a convolutional neural network, and (3) Quantitative analysis of the resulting 3D pore metrics. This particular combination of denoising and segmentation is robust against the fragmentation of common segmentation algorithms, while avoiding the volitional aspects of model selection associated with histogram fitting. We discuss the procedure applied to ternary phase SiC–TiC-diamond composites produced by reactive spark plasma sintering with porosity spanning 2–9 vol%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3