A method of blasted rock image segmentation based on improved watershed algorithm

Author:

Guo Qinpeng,Wang Yuchen,Yang Shijiao,Xiang Zhibin

Abstract

AbstractIt is of great theoretical significance and practical value to establish a fast and accurate detection method for particle size of rock fragmentation. This study introduces the Phansalkar binarization method, proposes the watershed seed point marking method based on the solidity of rock block contour, and forms an adaptive watershed segmentation algorithm for blasted rock piles images based on rock block shape, which is to better solve the problem of incorrect segmentation caused by adhesion, stacking and blurred edges in blasted rock images. The algorithm first obtains the binary image after image pre-processing and performs distance transformation; then by selecting the appropriate gray threshold, the adherent part of the distance transformation image, i.e., the adherent rock blocks in the blasted rock image, is segmented and the seed points are marked based on the solidity of the contour calculated by contour detection; finally, the watershed algorithm is used to segment. The area cumulative distribution curve of the segmentation result is highly consistent with the manual segmentation, and the segmentation accuracy was above 95.65% for both limestone and granite for rock blocks with area over 100 cm2, indicating that the algorithm can accurately perform seed point marking and watershed segmentation for blasted rock image, and effectively reduce the possibility of incorrect segmentation. The method provides a new idea for particle segmentation in other fields, which has good application and promotion value.

Funder

Postgraduate Scientific Research Innovation Project of Hunan Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3