Spontaneous pulmonary emphysema in mice lacking all three nitric oxide synthase isoforms

Author:

Kato Kaori,Tsutsui Masato,Noguchi Shingo,Iha Yukitoshi,Naito Keisuke,Ogoshi Takaaki,Nishida Chinatsu,Tahara Masahiro,Yamashita Hirotaka,Wang Ke-Yong,Toyohira Yumiko,Yanagihara Nobuyuki,Masuzaki Hiroaki,Shimokawa Hiroaki,Tanimoto Akihide,Yatera Kazuhiro

Abstract

AbstractThe roles of endogenous nitric oxide (NO) derived from the entire NO synthases (NOSs) system have yet to be fully elucidated. We addressed this issue in mice in which all three NOS isoforms were deleted. Under basal conditions, the triple n/i/eNOSs−/− mice displayed significantly longer mean alveolar linear intercept length, increased alveolar destructive index, reduced lung elastic fiber content, lower lung field computed tomographic value, and greater end-expiratory lung volume as compared with wild-type (WT) mice. None of single NOS−/− or double NOSs−/− genotypes showed such features. These findings were observed in the triple n/i/eNOSs−/− mice as early as 4 weeks after birth. Cyclopaedic and quantitative comparisons of mRNA expression levels between the lungs of WT and triple n/i/eNOSs−/− mice by cap analysis of gene expression (CAGE) revealed that mRNA expression levels of three Wnt ligands and ten Wnt/β-catenin signaling components were significantly reduced in the lungs of triple n/i/eNOSs−/− mice. These results provide the first direct evidence that complete disruption of all three NOS genes results in spontaneous pulmonary emphysema in juvenile mice in vivo possibly through down-regulation of the Wnt/β-catenin signaling pathway, demonstrating a novel preventive role of the endogenous NO/NOS system in the occurrence of pulmonary emphysema.

Funder

Grant for the Promotion of Advanced Medicine from the Okinawa Prefecture, Japan

Glaxo Smith Kline (GSK) Japan Research Grant 2018

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3