Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications

Author:

Firstov Sergei V.,Khegai Aleksandr M.,Kharakhordin Alexander V.,Alyshev Sergey V.,Firstova Elena G.,Ososkov Yan J.,Melkumov Mikhail A.,Iskhakova Lyudmila D.,Evlampieva Elena B.,Lobanov Alexey S.,Yashkov Mikhail V.,Guryanov Alexey N.

Abstract

AbstractDuring last decades there has been considerable interest in developing a fiber amplifier for the 1.3-$$\upmu $$μm spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 $$\upmu $$μm. It is due to the fact that most of the existing fiber-optic communication systems that dominate terrestrial networks could be used for the data transmission in O-band (1260–1360 nm), where dispersion compensation is not required, providing a low-cost increase of the capacity. In this regard, significant efforts of the research laboratories were initially directed towards the study of the praseodymium-doped fluoride fiber amplifier having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifiers had rapidly appeared as a commercial amplifier prototype it did not receive widespread demand in the telecom industry because of its low efficiency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth-doped active fibers was developed, which turned out to be a promising medium for amplification at 1.3 $$\upmu $$μm. Here, we report on the development of a compact and efficient 20-dB (achieved for signal powers between $$-40$$-40 and $$-10$$-10 dBm) bismuth-doped fiber amplifier for a wavelength region of 1300–1350 nm in the forward, backward and bi-directional configurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW. The compactness of the tested amplifier was provided by using a depressed cladding active fiber with low bending loss, which was coiled on a reel with a radius of 1.5 cm. We studied the gain and noise figure characteristics at different pump and signal powers. A record gain coefficient of 0.18 dB/mW (at the pump-to-signal power conversion efficiency of above 27$$\%$$%) has been achieved.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3