Spatial variations and long-term trends of potential evaporation in Canada

Author:

Li Zhaoqin,Wang Shusen,Li Junhua

Abstract

AbstractAssessing the status and trend of potential evaporation (PE) is essential for investigating the climate change impact on the terrestrial water cycle. Despite recent advances, evaluating climate change impacts on PE using pan evaporation (Epan) data in cold regions is hindered by the unavailability of Epan measurements in cold seasons due to the freezing of water and sparse spatial distribution of sites. This study generated long-term PE datasets in Canada for 1979–2016 by integrating the dynamic evolutions of water–ice–snow processes into estimation in the Ecological Assimilation of Land and Climate Observations (EALCO) model. The datasets were compared with Epan before the spatial variations and trends were analyzed. Results show that EALCO PE and Epan measurements demonstrate similar seasonal variations and trends in warm seasons in most areas. Annual PE in Canada varied from 100 mm in the Northern Arctic to approximately 1000 mm in southern Canadian Prairies, southern Ontario, and East Coast, with about 600 mm for the entire landmass. Annual PE shows an increasing trend at a rate of 1.5–4 mm/year in the Northern Arctic, East, and West Canada. The increase is primarily associated with the elevated air temperature and downward longwave and shortwave radiation, with some regions contributed by augmented wind speed. The increase of annual PE is mainly attributed to the augmentation of PE in warm seasons.

Funder

Government of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference67 articles.

1. Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. Math. Phys. Sci. 193(1032), 120–145 (1948).

2. Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38(1), 55–94 (1948).

3. Rosenburg, N. J., Blad, B. L. & Verma, S. B. Microclimate: The Biological Environment (Wiley, London, 1974).

4. Roderick, M. L. & Farquhar, G. D. The cause of decreased pan evaporation over the past 50 years. Science 298(5597), 1410–1411 (2002).

5. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3