Auto/paracrine factors and early Wnt inhibition promote cardiomyocyte differentiation from human induced pluripotent stem cells at initial low cell density

Author:

Le Minh Nguyen Tuyet,Takahi Mika,Ohnuma Kiyoshi

Abstract

AbstractCardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) have received increasing attention for their clinical use. Many protocols induce cardiomyocytes at an initial high cell density (confluence) to utilize cell density effects as hidden factors for cardiomyocyte differentiation. Previously, we established a protocol to induce hiPSC differentiation into cardiomyocytes using a defined culture medium and an initial low cell density (1% confluence) to minimize the hidden factors. Here, we investigated the key factors promoting cardiomyocyte differentiation at an initial low cell density to clarify the effects of cell density. Co-culture of hiPSCs at an initial low cell density with those at an initial high cell density showed that signals secreted from cells (auto/paracrine factors) and not cell–cell contact signals, played an important role in cardiomyocyte differentiation. Moreover, although cultures with initial low cell density showed higher expression of anti-cardiac mesoderm genes, earlier treatment with a Wnt production inhibitor efficiently suppressed the anti-cardiac mesoderm gene expression and promoted cardiomyocyte differentiation by up to 80% at an initial low cell density. These results suggest that the main effect of cell density on cardiomyocyte differentiation is inhibition of Wnt signaling at the early stage of induction, through auto/paracrine factors.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3