Short-term inhibition of fibrinolytic system restores locomotor function after spinal cord injury in mice

Author:

Shiraishi Yasuyuki,Kimura Atsushi,Matsuo Osamu,Sakata Yoichi,Takeshita Katsushi,Ohmori TsukasaORCID

Abstract

Abstract Spinal cord injury (SCI) is caused by an initial mechanical insult followed by a series of deleterious events that promote the progressive damage of affected tissues. Fibrinolysis, the process by which plasmin degrades cross-linked fibrin clots, has numerous functions in the central nervous system. However, the roles of the fibrinolytic system in SCI pathophysiology remain unknown. We investigated the roles of fibrinolysis in SCI, and explored therapeutic applications targeting fibrinolysis. Plasminogen-deficient (Plg−/−) mice exhibited significantly improved locomotor function in the early phase of SCI (the first 7 days post injury), with significant inhibition of bleeding and vascular permeability, but failed to demonstrate conclusive functional recovery. Consistent with these findings, the short-term administration of tranexamic acid (TXA) in wild-type mice over the first 3 days post injury significantly improved locomotor function after SCI, whereas prolonged TXA administration did not. Prolonged TXA administration resulted in significantly lower levels of matrix metalloproteinase activities in the spinal cord, suggesting that inhibition of the fibrinolytic system impaired tissue remodeling. Our results indicate that the fibrinolytic system has time-dependent biphasic actions following SCI. The temporally optimised modulation of fibrinolytic activity may thus be a novel therapeutic strategy to improve functional outcomes after SCI.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3