Spatially structured multi-wave-mixing induced nonlinear absorption and gain in a semiconductor quantum well

Author:

Panchadhyayee Pradipta,Dutta Bibhas Kumar

Abstract

AbstractWe have studied two-dimensional absorption and gain spectrum in an asymmetric semiconductor triple-coupled-quantum-well (TCQW) nanostructure. Four subband transitions are coupled by using four coherent fields in a close-loop configuration to introduce cross-Kerr effect and four-wave-mixing (FWM) induced nonlinearity in achieving nonlinear absorption and gain profiles. Position-dependent absorption and gain are obtained by applying one, or two coherent fields in a variety of standing wave configurations including superposed field configuration in the standing-wave regime. In addition to the control parameters like Rabi frequency and detuning, the specialty of the model is to employ double-controlled spatial phase-coherence guided by the FWM-induced phase and the phases introduced by the standing wave formation. Our results highlight the high-precision electron localization in spatial domain. The evolution of spatially modulated gain without inversion may be a substitute for obtaining gain from a traditional quantum cascade laser. The importance of the present work is to find its application in designing electro-optic modulators in semiconductor nanostructures in near future.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3