Multi-physics coupling simulation of electrode induction melting gas atomization for advanced titanium alloys powder preparation

Author:

Li Hailin,Shen Yongpeng,Liu Pu,Liang Weihua,Wang Mingjie,Wang Shuhong

Abstract

AbstractA numerical modeling method is proposed for the melting process of Titanium metals of Titanium alloys powder preparation used for 3D printing. The melting process simulation, which involves the tight coupling between electromagnetic field, thermal field and fluid flow as well as deformation associated during the melting process, is conducted by adopting the finite element method. A two-way coupling strategy is used to include the interactions between these fields by incorporating the material properties dependent on temperature and the coupling terms. In addition, heat radiation and phase change are also considered in this paper. The arbitrary Lagrangian–Eulerian formulation is exploited to model the deformation of Titanium metal during the melting process. The distribution of electromagnetic flux density, eddy current density, temperature, and fluid flow velocity at different time can be determined by utilizing this numerical method. In a word, the method proposed in this paper provides a general way to predict the melting process of electrode induction melting gas atomization (EIGA) dynamically, and it also could be used as a reference for the design and optimization of EIGA.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3