Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules

Author:

Rinne Sara S.,Dahlsson Leitao Charles,Gentry Joshua,Mitran Bogdan,Abouzayed Ayman,Tolmachev VladimirORCID,Ståhl Stefan,Löfblom JohnORCID,Orlova AnnaORCID

Abstract

AbstractUpregulation of the human epidermal growth factor receptor type 3 (HER3) is a common mechanism to bypass HER-targeted cancer therapy. Affibody-based molecular imaging has the potential for detecting and monitoring HER3 expression during treatment. In this study, we compared the imaging properties of newly generated 68Ga-labeled anti-HER3 affibody molecules (HE)3-ZHER3-DOTA and (HE)3-ZHER3-DOTAGA with previously reported [68Ga]Ga-(HE)3-ZHER3-NODAGA. We hypothesized that increasing the negative charge of the gallium-68/chelator complex would reduce hepatic uptake, which could lead to improved contrast of anti-HER3 affibody-based PET-imaging of HER3 expression. (HE)3-ZHER3-X (X = DOTA, DOTAGA) were produced and labeled with gallium-68. Binding of the new conjugates was specific in HER3 expressing BxPC-3 and DU145 human cancer cells. Biodistribution and in vivo specificity was studied in BxPC-3 xenograft bearing Balb/c nu/nu mice 3 h pi. DOTA- and DOTAGA-containing conjugates had significantly higher concentration in blood than [68Ga]Ga-(HE)3-ZHER3-NODAGA. Presence of the negatively charged 68Ga-DOTAGA complex reduced the unspecific hepatic uptake, but did not improve overall biodistribution of the conjugate. [68Ga]Ga-(HE)3-ZHER3-DOTAGA and [68Ga]Ga-(HE)3-ZHER3-NODAGA had similar tumor-to-liver ratios, but [68Ga]Ga-(HE)3-ZHER3-NODAGA had the highest tumor uptake and tumor-to-blood ratio among the tested conjugates. In conclusion, [68Ga]Ga-(HE)3-ZHER3-NODAGA remains the favorable variant for PET imaging of HER3 expression.

Funder

Cancerfonden

Vetenskapsrådet

VINNOVA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3