Author:
Nalinratana Nonthaneth,Suriya Utid,Laprasert Chanyanuch,Wisidsri Nakuntwalai,Poldorn Preeyaporn,Rungrotmongkol Thanyada,Limpanasitthikul Wacharee,Wu Ho-Cheng,Chang Hsun-Shuo,Chansriniyom Chaisak
Abstract
AbstractExcessive macrophage activation induces the release of high levels of inflammatory mediators which not only amplify chronic inflammation and degenerative diseases but also exacerbate fever and retard wound healing. To identify anti-inflammatory molecules, we examined Carallia brachiata—a medicinal terrestrial plant from Rhizophoraceae. Furofuran lignans [(−)-(7′′R,8′′S)-buddlenol D (1) and (−)-(7′′S,8′′S)-buddlenol D (2)] isolated from the stem and bark inhibited nitric oxide (half maximal inhibitory concentration (IC50): 9.25 ± 2.69 and 8.43 ± 1.20 micromolar for 1 and 2, respectively) and prostaglandin E2 (IC50: 6.15 ± 0.39 and 5.70 ± 0.97 micromolar for 1 and 2, respectively) productions in lipopolysaccharide-induced RAW264.7 cells. From western blotting, 1 and 2 suppressed LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression in a dose-dependent manner (0.3–30 micromolar). Moreover, analysis of the mitogen-activated protein kinase (MAPK) signaling pathway showed decreased p38 phosphorylation levels in 1- and 2-treated cells, while phosphorylated ERK1/2 and JNK levels were unaffected. This discovery agreed with in silico studies which suggested 1 and 2 bound to the ATP-binding site in p38-alpha MAPK based on predicted binding affinity and intermolecular interaction docking. In summary, 7′′,8′′-buddlenol D epimers demonstrated anti-inflammatory activities via p38 MAPK inhibition and may be used as viable anti-inflammatory therapies.
Funder
New Southbound Grant, Taiwan
Natural products and Nanoparticles Research Unit, Chulalongkorn University
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献